Thanks to inertia, most dust particles stay in the main channel. This desired effect can even be significantly improved with a good bypass channel design. The tapping ports of the bypass should face backwards so that the gas needs to reverse to reach the sensor. It has also been noted that flow guides next to the tapping ports keep the flow stable and laminar and thus reduce sensor signal noise. And, eventually, the tapping ports should be small, ideally with a diameter of 0.6 mm (see figure on the right).
Inlet conditions
Even though flow measurement using a bypass configuration is less sensitive to changes in the inlet conditions, it is still important to design the inlet path with care. Ideally, there should be no sharp bends or edges in the pipe directly upstream of the flow element, and no abrupt changes in the pipe diameter. Apart from that, some form of resistance to the flow (such as a sieve), just upstream of the main flow restrictor and evenly distributed across the entire diameter of the pipe, can help to stabilize turbulence and other undesired influences.
Choice of sensor
With the right sensor, flow measurement in bypass is the most reliable and economical method. Microthermal differential pressure sensors, such as those made by sensor manufacturer Sensirion, are ideally suited to fulfill the requirements for several reasons.
- The components are small, which helps to keep the size of the bypass small and thus reduces the space required for flow measurement.
- Flow-based thermal differential pressure sensors have a high level of sensitivity and are very stable at around zero. It is thus possible to achieve a very wide measurement range (high dynamic range or high turn-down ratio).
- Despite the thermal flow measurement method, the sensors are calibrated to measure the applied differential pressure. The sensors can thus be replaced and exchanged without recalibration.
- Sensirion offers a specific temperature compensation geared towards flow measurement in bypass (see further information at the end of this article).
The latter two points offer a further advantage. In many cases, provided that the main channel has a good design and meets specified production tolerances, there is no need for final calibration of the entire system. The fact that sensors are supplied calibrated and temperature-compensated, and that tolerances in modern injection molding are small, means that in many cases random testing of the pressure drop element will suffice.
Conclusion
To measure gas flow with a high degree of accuracy and repeatability, while at the same time keeping costs low, a bypass or differential pressure solution is generally most favorable. Compared with direct flow measuring techniques, the effects of external conditions can be reduced, and the cleanliness of the gas around the sensor element significantly increased. Additionally, if we select a thermal differential pressure sensor, which offers high-level precision even when flow rates are minimal, measurements around the zero point are extremely precise. In many cases, having the sensor calibrated for differential pressure combined with a suitable temperature compensation will eliminate the need for additional calibration over the entire measurement range.
Further Information
The so-called mass flow temperature compensation of differential pressure sensors simplifies gas flow measurement using the bypass configuration. The integrated calibration is implemented so that the flow can be correctly measured over the entire temperature range. Consequently, no further temperature compensation is required for the conversion of the differential pressure output signal to mass or volume flow. The user is spared the complicated process of characterizing the bypass system using several flow/temperature measurement points.