Authors: Konrad Domanski, Product Manager Gas Flow Systems, Sensirion
Thermal-mass technology is a proven means for measuring the flow of gasses and liquids. Technological advances and miniaturization have enabled the use of the technology for high-volume, cost-sensitive applications such as natural gas metering. Two recent studies now also confirm the long-term reliability of this technology for applications in harsh environments.
The studies investigated thermal-mass gas meters following operation in the field for up to over 10 years. They concluded that all meters were operating well within the accuracy limits prescribed during service and that the majority of meters still fulfilled the requirements for brand-new gas meters. Coupled with the release of a dedicated European standard in 2021 (EN 17526), thermal gas technology is therefore a cost-effective, proven and reliable solution for gas metering that is already powering millions of gas meters worldwide. Additionally, it offers extensive self- and network-diagnostic capabilities and is ready for a wide range of natural gas compositions including hydrogen blends and pure hydrogen.
Thermal-mass measurement principle
For the past 80 years, thermal-mass technology has been used for measuring flow in the most critical applications such as life-sustaining medical ventilation, air intake regulation in car combustion engines, building ventilation systems and control of sensitive industrial processes. The thermal-mass measurement principle is the most versatile and robust way to measure flow. Until recently, however, it was prohibitively expensive for high-volume, price-sensitive applications.